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MOTION OF A POLYDISPERSE MATERIAL IN A VERTICAL GAS FLOW
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The method of solution previously presented [1] for a two=-phase flow
is based on replacing the actual interaction between groups of particles
by some continuously acting force. Here a more rigorous method of
solution is presented via an analysis of the laws of collision between
numerous particle groups. Only steady-state flows under isothermal
conditions are considered, to simplify the problem,

§1, Case of a material with two fractions. The speed
of a particle of any size takes values in a cerfain range
at each point in the presence of collisions [1], so we
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introduce the velocity-distribution functions for the two
fractions,

ap;' =f; (w, L) du (i=1,12)), (1.1)
in which i is the bulk flow concentration of fraction
i, u is particle velocity, L is flow length, the sub-
script 1 refers to large particles, and the subscript

2 refers to small ones.

We assume that the particles are spherical and.
move along paths parallel to the axis of the channel [1].
Turbulent pulsations of the gas flow are neglected.

Let the group of small particles at time 7 lie at
cross section L and have velocities in the range (uy,
up + dug). *

If no particle in the group undergoes a collision in
time dr, then the group at time 7 + dr lies in cross
gection L + uyd7, and the particles have velocities

mtady, 1+ g (22 )] dus ,
in which a is the acceleration of a particle.

However, collisions cause certainparticles toleave
the group in time dv, while others enter if; hence the
particle concentration in the group at time 7 + dr will
differ from fz (uy, L)du,. Assuming that the increase in
particle concentration in the group is proportional to

*For brevity, this is written below as u,, du,.

dlizd'r for du, and dr sufficiently small [2], and denoting
the coefficient of proportionality by 8ef, /AT, we get

{fz (us -+ aqdn,

L+ uydv) [1 + 'u,E% (—Z—’;)dr] — faua, L)} dug =

_ A
= —a?duad s

or

(1.2)
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The rate of change of f, due to collisions may be
expressed as the sum of terms owing to collisions with
small and large particles, respectively:

Oufy | 07 = (0efy | 8T)a + (Ocfa / 01)y - (1.3)

Consider groups A and B of small particles, which
in section L move with velocities (uy, duy) and (u3, duy),
respectively. The following is the concentration of the
group-A particles that collide with group-B particles
in time dr and so leave the group:*

By 1.4)

Aty = 6 {us— ug| wfs (ug) dug ’

dt
fa(us)dug A
in which ATy, is the mean time of free motion of a

group-A particle between collisions with group-B par-
ticles [1], 6 is particle size, and w is gas speed.
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It follows from (1. 4) that the total loss of particles

from group A on account of collisions with all small
particles is

*For brevity, f(u, L) is written as f(u).
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Let group C of small particles move with speeds
(uy, duy), this range being chosen such that a group-C
particle by collision with a group-B particle acquires
a speed in the range (uy,du;) and enters group A.

The following is the concentration of group-C par-
ticles that collide with group-B particles in time dr:

fa (uy) duy dv/Atyg . 1.6)

The speed of the group-C particles is defined [1] b

_ Auy (1L k) ug 4
=T dme= gy

dU2, (1,7)

in which k is the coefficient of restitution on collision.
The following is the concentration of particles entering
group A in time dT as a result of collision with small
particles, as given by (1.4), (1.6), and (1.7):
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It follows from (1.5) and (1. 8) that
af uMax
OJ2y 6 \ 16 dus — (1 4-k) u.
(ar)g“ &Y 3 [(3 k)9f2< 5% 3)“
Usmin
— folua) | fo(ua) 102 L 1.9)

The rate of change of f, from collision with large
particles is derived similarly.
Then (1.2) may be put as

af 6/2 d a
: +uay g () =

8
+a Fre 5w X
'Ltz
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The equation for fy is

a
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It follows from (1.1) that the solutions to (1.10)
and (1.11) must obey the following normalization con-
ditions:

ujmax
fi(m, Lydu =8/

Uimin

1.12)

It is assumed that the fj(u, L) differ from zerc in
the ranges (Ui min, 4 max) and are identically zero
outside these ranges. These intervals have to be de-
terminedin order tosolve (1.10)and (1.11 )numerically.

The small particles in the stabilized part of the flow
cannot move more rapidly than they do in the absence
of the coarse ones, 1.e., Uyis) = w — v, In which v is
particle velocity (the superscript © indicates that the
quantity refers to the stabilized part). Similarly, it

follows that uy ) = w — v,. Here we have

) (c0) (o0} {c0)
U/zgm;x = Uiminy Uimax = Wzmax

(1.13)

For example, suppose that u, 5 < u; 502, Then in
some part of the flow, the aerodynamic resistance and
the collisions with large particles cause the speed of
all small particles moving at less than w2 to in-
crease at least to w oo If up 550 > uy 55, on the other
hand, a small particle with the minimum velocity will
collide with some slower large particle and acquire a
velocity less than u, (o) and the next collision will re-
duce the velocity further, and so on. The flow there-
fore must contain small particles whose velocity differs
by an arbitrarily small amount from . The cor-
rectness of the second equality in (1,13} may be dem-
onstrated similarly.

As regards the acceleration section, we consider
the case where f; and f2 in the inlet section differ from
zero in some range (umm, u,;;’;) for concreteness, we

assume that uD < uis! and umes < s where super-

script 0 denotes that the quantity relates to the inlet
section. It can then be shown by induction that the
equalities of (1.13) apply for all sections.

Let the velocities of the particles of both fractions
take values in the range (umm, uma)) in some section A.
For anysection B further from the inlet than A we have

(4) (B) (A)
ulmm > Umin, Uamax > Umax »

(1.14)
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where the quantities on the left can be deduced from
the equations of motion for a monodisperse material
[3]. A large particle having the maximum velocity in
section A will move [3] with a velocity ugmex < U 252!

in section B, whereas if this particle undergoes suf-
ficient collisions with small particles while moving
along part AB, it may at B have acquired a velocity
differing by an arbltrarlly small amount from ug )
(but not exceeding u,{5)). Similarly it can be shown that

(B) B
U min = Uy rgnr)x

System (1. 10)—(1. 11) canbe solved by the grid method; Fig. 1 shows
the region for determination of the functions and the grid u = constant,
L = constant, The curves for umay and umjp are derived from the
equations of motion for a monodisperse material [3] for small and
large particles, respectively. We denote the right-hand sides of (1. 10)
and (1. 11), respectively, by I; and I, furthermore, we replace the
partial derivatives in these equations by the difference relations

of,  1,(A)—1,(B) o,  LO—f4)
3L —~ AL, ' o = Aum() (=12 (1.19)

to get

u a,.
) = (L4 5E 1B — 1))

) a; d @, \"L
x(A—Z'k——Tg“; ey “1:) (=12 . (116)

Let f; and f, be known in section k — 1, Thevalues of the functions
at the ends (D and H) are unknown, since the normalization conditions
of (1. 12) serve as boundary conditions, We put fy(D) = &;, f,(D) = &,
and from (1. 16) calculate successively fi(E), fi(F), ..., fi(H), which
are linear functions of ; and &, so ®; and &, are uniquely deter-
mined from (1. 12).

It is clear that the desired functions must be known in the inlet
section.

This method of solution involves a large volume of computation
which must be performed by computer,

§2, Consider the particular case that can be solved approximately;
let &y > &5 As the mass of a small particle is then negligible relative
to the mass of a large one, the velocity change in a large particle due
to a single collision with a small one is very slight, but the collisional
frequency must be very high [1]. We replace the collisional action of
the small particles on a large one by a continuously acting force. All
large particles in a given section must move with the same speed Uy,
As previously, we assume that the velocities of the small particles take
values in some range and consider fa, the velocity-distribution function
for the small particles. However, we simplify the treatment by ne-
glecting the collisions between small particles.

Let k # 1. We neglect the mass of a small particle relative to that
of a large one, and instead of the expressions for oy and o, in (1. 10)
we get

ilad pay g S TE 2.1

As all the large particles have the same speed, we must have

f () = Brd (uy — Uy, (2.2)

in which §(t) is the delta function. We use (2. 1) and (2. 2) with the
notation

P = Shwpy’ (81 + 62}/ 60 (2. 3)

to replace (1. 10) by

b g;, T e a£2+u2f2duz(ua) \l’(U )

14k

) —h)] kD, @9

If k = 1, the velocity of a small particle after collision is always
U, if the above assumptions apply [1], and the flow contains no small
particle that after collision with a large one has a velocity in the
range g, dup Then the first term in the expression in square brackets
in (2.4), which equals (apart from a factor) the rate of change in fa
on account of entry of new particles into the group ug dup, is identically
zero for k = 1, and (2. 4) is replaced by

;] dfa d [ as
G+t + b, () =
=_1p(—[l%—1)f.., (k=1) . (2.5)
We have
dfsf OL = 0

for the stabilized part of the flow, and (2.5) is readily integrated in
this case.

The form of the solution is dependent on the form of the expression
for dg, i.e., on the range of values forR, (the Reynolds number) for the
motion of the small particles[3]. For instance, the following are
solutions of (2. 5):

Ry = 13-800
¢— Vo™t
(@1t Vg +a)*™

Vo, 4o t)- 2.6)
3va gUlec ! )

fa=Cus

X exp (C arctg

Rg <1

3e-1
w— Ug Yoy
fo = Cu, ( s —1) exp (g{}rlwug) s

P
12 = W up, e:BMgU:m(w—Ulm—vg),
2wy
Vaer o0 Uit o) @

The solution of (2. 5) exists in the range (—oo, u, n(lf;), in which
Uy ,ﬁ’:,){ = w — vy; bur arguments analogous to those of §1 allow us to
show that the velocity of the small particles in the stabilized section
cannot be less than U; ., and so f, differs from zero in the range
(U 100, usT)) and is identically zero for other values of u,.

1t follows from (2.8) and (2,7) that the formof f,isdependenton €, For
€>1/3 (Ry< 1) and for &€ >1/2 (R; inrange 1310 800), f, (”zma)) = (;

but f, (up xy) = oo (Fig. 2) if & is less than these critical values.
After transformation, the expression for & for Ry < 1 can be put as

e =

1 3 61 62 2w 1
—.3—!_ 2 ( :SE; ) UB (u 2max 100)2} (az)u2=U1°o - (2.8)
Here the expression in brackets is the mean value of the ac-
celeration equivalent to the action of the large particles on the small
ones moving at speed uag’:; [11, so € for Ry < 1 has a definite physical
significance: it is proportional to the ratio of the total accelerations for
small particles with the maximum and minimum velocities, respec-
tively. Also, & is uniquely determined by that ratio for other ranges in
Ry It follows from (2. 3) that € increases with the concentration of
large particles for given §;, &,, and 8.
Equation (2. 4) for the stabilized part of the flow is a differential
equation with advanced argument. It is readily seen that for
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ug > ug® = Yy [(1 — 8) w2 + (1 + k) Uy ] (2.9)

the argument exceeds u(w)ax, so (2, 4) becomes (2. 5) in the range
{(ug®, uy max) which is the initial manifold for (2. 4), while the values
of f, in that range (i. e, theinitial function) may be found as indicated
above,

The values of f;in the range (Us.» u5") may be found bysuccessive
integration. Substitution for the initial function in (2. 4) gives a dif-
ferential equation in the range (uy"™, u,), in which

u*t =1 [ — B u* + (4 + k) Uyl

Substitution of this solntion into (2. 4) gives us the equation for the
next range, and so on.

If k #1, f,also differs from zero in the range (U, uéﬁ)ax).

We can determine U, as follows. The following is the equation of
motion for the large particles in the stabilized part, subject to the
above assumptions [1, 3]:

A

in which ny is dependent on the range in Ry [3], while a4, is a con-
tinuously acting force (per unit particle mass) equivalent to the action
of the small particles on large ones during collisions, which can[1] be
put as

(2. 10)

(00}2
(42— U’loo)2

Ug

a fadus . (2.11)

1c

3 (61 - 6a)t 2ma;

- .2 1 1 U2

S a+me &l S
Uloo

We determine f, for several values of Uy, and then graphs of
e = qc(Uye) are drawn up in accordance with (2. 10) and (2. 11);
the abscissa of the point of intersection is the desired value of Uy,
Equations (2, 4) and (2. 5) have also been solved by the grid method
for the acceleration section, with the variation in U, along the flow
given{1, 3] by

a1 l:(w——Ul (2.12)

Uvgr =¢ )“q+%'

The following example was computed for the stabilized part of the
flow for a material consisting of two fractions:

8, = 5 mm, 62=(').5mm, w = 20 m/sec ,
By’ = (0.738—31.2) 107 m¥/m?, »; = 12.48 m/sec |

vy = 1.86 m/sec, P2’ = 0.738 m3¥m 3

and the resulting distributions are shown in Fig. 2, in which

curve 1 2 3 4 5 6
k 1 1 1 1 1 0
e=0.141 0.397 0.513 1.284 13.45 0.968

The mean speeds of the small particles are determined from the
conditions for averaging with respect to the true bulk concentration:
(o0,
“2‘ma>)z A
Cugy =By ( 3 f2 du,g)
Uy

U100

(2. 13)

The results showed that the approximate method of {1] for this
problem gives underestimates of the velocities of both fractions, but
the error of the method is only 8-10% in these examples.

§3. Consider a dispersed material with a contin-
uous particle-size distribution characterlzed by a

function x:
dp’ = z (8)ds. (3.1)

The following function F is the distribution by ve-
locity and size:

@*p’ = F (8, u, L) dbdu . (3.2)
The general form of the equation for F does not
differ from (1.2). To find 8¢F AT we consider groups

A and B of particles having size ranges 6;, d6; and
8y, dd, and velocity ranges uy, duy and u,, duy, re-
spectively, in section L, The concentration* of group-
A particles is as follows:

F (8, wy) dbyduydr/Avy,, (3. 3)
and these particles collide with group-B particles in
time dt; here ATy, is defined as in §1. Transformation
and integration of (3. 3) gives the following expression
for the total loss of group-A particles as a result of
collisions with all particles in the flow:

2 wF (8, 1) 8, dus d x

dmax Ymax .
y O A8 we =] pig, up)duads,.  (3.4)
[ Uz
Smin Umin

Similarly, the gain in the concentration of group-A
particles by collision is

3 3max Ymax (6118 )2 [ |
1 2 =) Uy —— U1
Swasamar { {05 —al
3min “min

X F (81, Gatty — 6aus) F (8y, us)du, dbs (3.5)
Then (1.2), (3.4), and (3.5) give
U oF (6], ul) _+_ aF (611 1) + U]_F (61’ ul) du ( ) —
5 Bpax Ymax (5 16y ] |
’ 1o 02)° [Uz— U 2 _
— —2—[0 S S ——3;5-———;;—* [63 F(élq e 2Y22]
smin “min
— Galts) — F (8, u1)] F (8s, us) du,dds; - (3. 6)

It follows from (3.1) and (3.2) that the solution to
(3.6) must obey the normalization condition

F (6, u)ydu = z(0) 38.7)

Umin

In the stabilized part, u{S) = w — vy is the max-
imum velocity of the particles of minimum size,
while S5 = w — ¥pax is the minimum velocity of the
largest particles. As in §1, it can be shown that:

1) F in the stabilized part differs from zero in a

rectangle whose vertices are

(Omin, uEI‘;olgl)y (Bmin, umax) (Bmax; ugnm) {Bmax, ugna)x) .

*For brevity, F(6,u) is written in place of F(d,u, L).



34 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI

2) If the velocities in the inlet section take values
within a rectangle whose sides are parallel to the axes
of 6 and u, the same form for the region F = 0 persists
in all sections of the acceleration part, with umax =
= Uy g% (L) and umin = Umin(l) defined by the equations
of motionfor a monodisperse material [ 3], respectively,
for the particles of minimum and maximum size.

Equation (3.6) may alsobe solved bythe grid method.
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